APPENDIX 10F Chemical Engineering Design Criteria # **Chemical Engineering Design Criteria** # 10F.1 Introduction Control of the design, engineering, procurement, and construction activities on the project will be completed in accordance with various predetermined standard practices and project specific programs/practices. An orderly sequence of events for the implementation of the project is planned consisting of the following major activities: - Conceptual design - Licensing and permitting - Detailed design - Procurement - Construction and construction management - Startup, testing, and checkout - Project completion The purpose of this appendix is to summarize the general chemical engineering design criteria for the project. These criteria form the basis of the design for the chemical components and systems of the project. More specific design information is developed during detailed design to support equipment and erection specifications. It is not the intent of this appendix to present the detailed design information for each component and system, but rather to summarize the codes, standards, and general criteria that will be used. Subsection 10F.2 summarizes the applicable codes and standards and Subsection 10F.3 includes the general criteria for design water quality, chemical conditioning, chemical storage, and wastewater treatment. # 10F.2 Design Codes and Standards The design and specification of all work will be in accordance with the laws and regulations of the federal government and the state of California and local codes and ordinances. Industry codes and standards partially unique to chemical engineering design to be used in design and construction are summarized below. - ANSI B31.1 Power Piping Code - ASME Performance Test Code 31, Ion Exchange Equipment - American Society for Testing and Materials (ASTM) - California Building Standards Code (CBSC) - Occupational Safety and Health Administration (OSHA) - Steel Structures Painting Council Standards (SSPC) - Underwriters Laboratories (UL) - American Waterworks Association (AWWA) Other recognized standards will be used as required to serve as design, fabrication, and construction guidelines when not in conflict with the above-listed standards. The codes and industry standards used for design, fabrication, and construction will be the codes and industry standards, including all addenda, in effect as stated in equipment and construction purchase or contract documents. # 10F.3 General Criteria # 10F.3.1 Design Water Quality ### 10F.3.1.1 Reclaimed and Potable Water The Central Basin Municipal Water District (CBMWD) will supply reclaimed water and the City of Vernon will supply potable water to the VPP. These will be used, either treated or untreated, for all industrial water needs in the VPP including cooling tower makeup, service water, HRSG feedwater makeup, and combustion turbine evaporative cooling. Typical water analyses for the water supplies are presented in Subsection 8.14. # 10F.3.1.2 Demineralized Water System Makeup to the steam cycle will be high quality demineralized water. High quality demineralized water will also be used for combustion turbine water washes. Minimum demineralized water quality will be as follows: - Total dissolved solids 0.1 milligram per liter (mg/L) - Silica as $SiO_2 0.005 \text{ mg/L}$ - Specific conductance -0.1 microsiemen per centimeter (μ S/cm) - pH 6.5 to 7.5 ### 10F.3.1.3 Construction Water Water for use during construction will be supplied by City of Vernon potable water system. ### 10F.3.1.4 Fire Protection Water The source of water for fire protection will be a potable water line from the City of Vernon. # 10F.3.2 Chemical Conditioning ### 10F.3.2.1 Cycle Chemical Conditioning To control corrosion and deposit formation in the HRSG/steam turbine cycle, neutralizing amine and oxygen scavenger will be added to the condensate and/or feedwater, and a mixture of phosphates may be added to the HRSG LP and IP drums. ## 10F.3.2.2 Circulating Water System Chemical Conditioning Circulating water chemical conditioning will consist of chemicals to minimize the formation of mineral scale and biofouling. Scaling will be controlled by the use of sulfuric acid for alkalinity adjustment in conjunction with scale inhibitors. Sodium hypochlorite or chlorine dioxide will be used to minimize biofouling of the condenser tubes and the cooling tower. Systems will also be provided for the feeding of alternate biocides, such as stabilized bromine, sodium bromide, or a non-oxidizing biocide. # 10F.3.3 Chemical Storage # 10F.3.3.1 Storage Capacity Chemical storage tanks will, in general, be sized to store a maximum of 10,000 gallons. Two 17,500-gallon tanks will be provided for the storage of aqueous ammonia for the selective catalytic reduction (SCR) systems. ### 10F.3.3.2 Containment Chemical storage tanks containing corrosive fluids will be surrounded by curbing. Curbing and drain-piping design will allow a full-tank capacity spill without overflowing the curbing. For multiple tanks located within the same curbed area, the largest single tank will be used to size the curbing and drain piping. For outdoor chemical containment areas, additional containment volume will be included for stormwater. ### 10F.3.3.3 Closed Drains Waste piping for volatile liquids and wastes with offensive odors will use closed drains to control noxious fumes and vapors. # 10F.3.3.4 Coatings Tanks, piping, and curbing for chemical storage applications will be provided with a protective coating system. The specific requirements for selection of an appropriate coating will be identified prior to equipment and construction contract procurements. # 10F.3.4 Wastewater Treatment Metal cleaning wastes from pre-operational and operational chemical cleaning of the boiler systems of the HRSG will be collected, treated, and disposed offsite by the chemical cleaning contractor. Cooling tower blowdown and other plant process wastewaters will be collected and discharged into the Sanitation Districts of Los Angeles County sanitary system via the City's sanitary sewer. Sanitary wastewater will be discharged to the Sanitation Districts of Los Angeles County sanitary system via the City's sanitary sewer.